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A boundary element formulation for the solution of multiple moving
boundary problems is presented and tested herein. A heat transfer problem
involving heating of solid, melting of solid, and partial vaporisation of liquid
is considered. Numerical results show that the boundary element method is
more suitable and more accurate than both finite difference and finite element
methods for this kind of problem. Q 1997 Academic Press
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1. INTRODUCTION

Many physical and engineering processes can be modelled as moving boundary,
or Stefan, problems, where a set of partial differential equations is to be solved for
a domain whose boundaries are not known a priori but have to be determined as
an integral part of the solution. Due to the complexity of the boundary conditions,
analytical solutions are impossible to obtain, with the exception of relatively simple
cases, and therefore, recourse is often made to numerical techniques, such as Finite
Difference (FD), Finite Element (FE), and Boundary Element (BE) methods. Most
numerical methods developed for such problems are conceived for a single moving
boundary separating two adjacent domains [1].

Since one-moving boundary problems have a wide range of application in physics
and engineering, they became synonymous with Stefan problems. However, many
other processes, in which several boundaries separating different regions are simul-
taneously in motion, also fall in that category. A heat transfer process involving
melting of solid and partial vaporisation of the liquid is one of such problems.
Multi-moving boundary problems have been dealt with by both FD and FE methods.
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Zerroukat and Chatwin [2] used an explicit exponential finite-difference solution
for the heat equation coupled with a variable mesh, according to the velocity of
the moving boundary. Bonnerot and Jamet [3] extended the adaptive space-time
finite element scheme reported in [4] to deal with multi-phase problems. They
used curved triangular elements for appearing boundaries and curved trapezoidal
elements elsewhere. An attractive feature of this method, especially for moving
boundaries, lies in the fact that the space discretization at any time step can be
completely independent from that of the previous step.

In recent years, the boundary element method has emerged as a powerful and
cost effective alternative to FD and FE methods, for many problems particularly
those with variable and extended domains, since only the discretization of the
boundary is necessary [5]. In this paper a boundary element based technique,
capable of dealing with multi-moving boundaries with great ease, is presented and
tested on a heat transfer problem involving appearing and disappearing phases with
several simultaneous moving boundaries. For comparison purposes the collapse of
a solid wall treated in references [2, 3] is also considered.

2. BOUNDARY INTEGRAL FORMULATION

Consider the general heat equation

C
T(x, t)

t
5 K=2T(x, t) for x [ V(t) , Rd, t . 0 (1)

with certain conditions on the boundary G 5 V. T(x, t), C, and K denote the
temperature at the spatial position x at time t, heat capacity per unit volume, and
heat conductivity, respectively. The integral equation corresponding to (1) over the
entire space-time domain can be obtained by starting with the weighted residual
statement

Et

t0
dt E

V(t)
G Sa=2T 2

T
t D dV 5 0, (2)

where a 5 K/C denotes thermal diffusivity and G is the free space Green’s function
given by

G(j, x, t, t) 5
1

[4fa(t 2 t)]d/2 exp H2
r 2

4a(t 2 t)J (3)

which is the solution of

G
t

1 a=2G 5 2d(j 2 x)d(t 2 t), (4)

where d denotes the Dirac delta function, d is the dimension of the problem, and
r is the Euclidian distance between the field point x and the source point j. Using
Green’s second identity and making use of the Reynolds transport theorem, which
can also be seen as the Leibnitz rule for a deformable domain, the integral represen-
tation is obtained in the form [6–13]
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c(j)T(j, t) 5 a Et

t0
dt E

G(t)
FG

T
n

2 T
G
n

1
1
a

TG(nW · vW)G dG 1 E
V(t0)

GT dV, (5)

where (nW · vW) is the rate of the boundary motion in the outward normal direction
and c(j) is a constant which depends on the position of the source point j, the
smoothness and shape of the boundary,

c(j) 5 5
0 for j Ó V

1 for j [ V

b/2f for j [ G,

(6)

where b is a function of the local geometry of the boundary at the source point j.
For a smooth boundary b 5 f.

3. APPLICATION TO MULTIPLE MOVING BOUNDARIES

Consider a heat transfer problem in which a material slab of thickness a, initially
at constant temperature T0 , is subjected to two different heat fluxes F1(t) and F2(t)
at x 5 0 and x 5 a, respectively (see Fig. 1). After some time the temperature, at
x 5 0 or x 5 a, reaches the melting point Tm and a moving boundary separating liquid
from solid appears. Another vapour/liquid interface appears when the temperature
reaches Tv . Assuming that the vapour, or removed material, is removed as soon as
it appeared, the problem is to track the position of the different moving boundaries
simultaneously in motion. The problem can be written as

T
t

5 aj
2T
x2 , (x, t) [ Rj , j 5 1, 2, 3, (7)

where a1 5 a3 5 al and a2 5 as ; subscripts l and s refer to liquid and solid,
respectively. The initial and boundary conditions are

T(x, 0) 5 T0 (8)

2K2
T
xUx50

5 F1(t); t0 , t , t2 ; K2
T
xUx5a

5 F2(t), t0 , t , t3 (9)

2K1
T
xUx50

5 F1(t); t2 , t , t1 ; K1
T
xUx5a

5 F2(t), t3 , t , t4 (10)

T(X2 , t) 5 T(X3 , t) 5 Tm ; T(X1 , t) 5 T(X4 , t) 5 Tv (11)

(21) jlm
dXj

dt
5 Kj

T
xUX1

j

2 Kj21
T
xUX2

j

for j 5 2, 3 (12)

lv
dXj

dt
5 Kl

T
xUXj

1 (21) j11Fmin( j,2)(t), j 5 1, 4, (13)
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FIG. 1. Different stages of the process.

where tj is the time of appearance of the moving boundary Xj(t) (see Fig. 2); lm,
lv are latent heat of melting per unit volume and latent heat of vaporisation per
unit volume, respectively.

Applying Eq. (5) to any region Vj , j 5 1 ... 3, bounded by the moving boundaries
Xj and Xj11 , the following can be written,

c(j)Tj(j, tn) 5 aj Etn

t0
FG(j, x, tn , t)

T(x, t)
x

2 T(x, t)
G(j, x, tn , t)

x

1
1
aj

T(x, t)G(j, x, tn , t)
dx
dtGXj11(t)

Xj(t)
dt 1 cj(j, tn), (14)



505MULTIPLE MOVING BOUNDARY PROBLEMS

FIG. 2. Adjacent domains Rj with their separating boundaries Xj .

where

c2(j, tn) 5 Ea

0
T(x, t0)G(j, x, tn , t0) dx; c1(j, tn) 5 c3(j, tn) 5 0. (15)

Applying Eq. (14) to each extreme point of the domain Vj and assuming a step-
wise variation of temperature and its derivatives, and a linear propagation of the
moving boundary X i

j 5 X i21
j 1 X i

j(ti 2 ti21), within each time step, the following
system for the time step tn is obtained,

1
2

un
j 5 aj On

i5ij11

Hg(Xj , Xj11 , tn , ti) Sqi2
j11 1

1
aj

X i
j11ui

j11D
2 ui

j11h(Xj , Xj11 , tn , ti)J2 aj On
i5ij

Hg(Xj , Xj , tn , ti)

Sqi1
j 1

1
aj

X i
jui

jD2 ui
j h(Xj , Xj , tn , ti)J1 cj(Xj , tn) (16)

1
2

un
j11 5 aj On

i5ij11

Hg(Xj11 , Xj11 , tn , ti) Sqi2
j11 1

1
aj

X i
j11ui

j11D
2 ui

j11h(Xj11 , Xj11 , tn , ti)J2 aj On
i5ij

Hg(Xj11 , Xj , tn , ti)

S qi1
j 1

1
aj

X i
j ui

jD2 ui
j h(Xj11 , Xj , tn , ti)J1 cj (Xj11 , tn), (17)

where un
j 5 T(Xj , tn), qn1

j 5 (T/x)(X 1
j , tn), qn2

j 5 (T/x)(X 2
j , tn), X i

j 5

(Xj/t)ti
, X i

j 5 Xj(ti), ij is the time index of appearance of Xj , and

g(j, X, t, ti) 5 Eti

ti21

G(j, X(t), t, t) dt, h(j, X, t, ti) 5 Eti

ti21

G(j, X(t), t, t)
x

dt. (18)
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The integrals in (18) can be calculated analytically; see Appendix for details. After
some manipulation and using a matrix form, for each region Vj a system of equations
must be solved

Gn
j H un

j

un
j11
J1 Hn

j Hqn1
j

qn2
j11
J5 Mn

j , (19)

where Gn
j and Hn

j are matrices of 2 3 2 elements (see details in Appendix).
It can be seen that to solve the system (19), X n

j and X n
j must be known. Since

the velocity and the position of the moving boundaries are not known in advance,
an iterative procedure is employed. Assumed velocities and positions of the moving
boundaries, using an extrapolation from the two previous time steps, are used to
solve (19). The velocities are then updated using the solution of (19) and the
Stefan conditions at the moving boundaries. This process is repeated until a desired
accuracy is achieved. In general, for an arbitrary number (J 2 1) of adjacent domains
separated by J moving boundaries, the following system with 2(J 2 1) unknowns,
due to the necessity of calculating the heat flux on both sides of the interface, must
be solved,

un
1

k qn1
1

k

un
2 qn2

2

un
2 qn1

2

.

.. .
..

un
j qn2

j

Gk
n un

j 1 Hk
n qn1

j 5 Mk
n , (20)

un
j11 qn2

j11

.

.. .
..

un
J21 qn2

J21

un
J21 qn1

J21

un
J qn2

J

where Gk
n , Hk

n are tri-diagonal matrices and Mk
n a vector computed for each iteration

k for each time step n.
If the Stefan conditions (12) and (13) are rewritten as,

Xj 5 w(q2
j , q1

j , F1 , F2 , lm , lv) (21)

the velocity (X n
j )k at the kth iteration is given by

(X n
j )k 5 (1 2 gj)(X n

j )k21 1 gj(wn
j )k21, (22)

where gj is a relaxation factor (0 , gj # 1) and,

(wn
j )k 5 w((qn

j )k
X 2

j
, (qn

j )k
X 1

j
, F n

1 , F n
2 , lm , lv). (23)
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It seems quite instinctive to take gj 5 1; however, numerical experiments show
that the scheme may converge for certain time steps but not for others. The choice
of gj must be varied in order to get satisfactory convergence for all the time steps
and for different situations. Generally a choice of 0.4 # gj # 0.6 is very satisfactory
when w is a function of two or more temperature gradients; however, a choice
0.8 # gj # 1.0 is more suitable for the case of w as function of one temperature
derivative, like in one-phase problems. The iterative process is stopped when

max SU100 3
(X n

j )k11 2 (X n
j )k

(X n
j )k U , j 5 1, JD# «, (24)

where « is a small prescribed relative error. It is worth mentioning that, for a multi-
dimensional moving boundary problem, the above iteration scheme would possibly
need to be replaced by more globally convergent schemes such as quasi-Newton
or Fletcher–Powell minimization algorithms [14]. However, for the present problem,
the relaxation scheme has been shown to be satisfactory with an average number
of only two iterations per step.

It has been noticed that the changes in Mk
n , in Eq. (20), are small from one

iteration to another (i.e., Mk
n 5 Mk21

n 1 O(Dt3); see Table IV). Therefore, the vector
Mk

n , which involves all the previous time steps, can be calculated only once, for
each time step n, using the velocities and positions of the moving boundaries for
the first iteration only (k 5 1); i.e., it is CPU-cost effective to solve, instead of (20),
the following system (omitting the subscript n):

Gkuk 1 Hkqk 5 M1. (25)

Since at each boundary either the heat fluxes or the temperature are to be
determined, but not both, the system of equations (20) or (25) can be transformed
as Ax 5 b with 2(J 2 1) unknowns, and solved using a standard Gauss elimina-
tion technique.

In order to validate the numerical results, an energy balance check is performed
at each time step. Multiplying (1) by a continuous function f and integrating by
parts gives

2 EE
R

CT
f

t
dx dt 1 EE

R
K

f

x
T
x

dx dt 2 E
R

f SCT dx 1 K
T
x

dtD5 0, (26)

where R , [0, a] 3 [0, te] and te denotes the time at which the process ends. For
the particular case of f 5 1 the following energy balance expression is obtained

E
R
SCT dx 1 K

T
x

dtD5 0. (27)

Applying Eq. (27) to the different regions Rj 5 [Xj , Xj11] 3 [t, t9], j 5 1, 3 (see
Fig. 2) and making use of the Stefan conditions (12) and (13), we obtain
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O3
j51

Cj FE
V9j

Tdx 2 E
Vj

Tdx 1 E
Gj

Tdx 2 E
Gj11

TdxG1 lv DX1

2 Et9

t
F1(t) dt 1 lm DX2 2 lm DX3 2 lv DX4 2 Et9

t
F2(t) dt 5 0, (28)

where DXj 5 Xj (t9) 2 Xj (t). The left-hand side of (28) can be subdivided into

E1 5 Cl FE
V91

Tdx 2 E
V1

Tdx 1 E
V93

Tdx

2 E
V3

Tdx 2 Tm(DX2 2 DX3) 2 Tv(DX4 2 DX1)G (29)

E2 5 Cs FE
V92

Tdx 2 E
V2

Tdx 2 Tm(DX3 2 DX2)G (30)

E3 5 lm(DX2 2 DX3) (31)

E4 5 lv(DX1 2 DX4) (32)

E5 5 Et9

t
[F2(t) 1 F1(t)] dt. (33)

Equation (28) can also be written as

E5 2 O4
i51

Ei 5 0. (34)

The quantities in (29) to (33) can be interpreted physically as:

E1 : Energy to heat the liquid regions R1 and R3 .

E2 : Energy to heat the solid region R2 .

E3 : Energy to melt the solid.

E4 : Energy to vaporise the liquid.

E5 : Energy provided.

4. RESULTS AND DISCUSSION

The method described in the previous section is used to solve the problem defined
by Eqs. (7) to (13) with the following example of data, which will be referred to
as problem 1:

a 5 2.0 m, T(x, 0) 5 20 8C, Cl 5 3.5 W/m3 8C,

Cs 5 4.0 W/m3 8C, Kl 5 0.30 W/m8C, Ks 5 0.25 W/m8C,

lm 5 2000 J/m3, lv 5 30000 J/m3, Tm 5 600 8C, Tv 5 2000 8C,

F1(t) 5 b0 1 b1t 1 b2t2 1 b3t3 W/m2, F2(t) 5 c0 1 c1t 1 c2t2 1 c3t3 W/m2.
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TABLE I
Velocity and Position of the Moving Boundaries for Problem 1, with the Corresponding

Relative Error Due to the Energy Balance, «e , also tabulated; Dt 5 1/20, b 5 h30, 5, 0, 10j,
and c 5 h15, 20, 15, 0j

Time [s] Velocities [m/s] Positions [m] Error [%]
t X1(t) X2(t) X3(t) X4(t) X1(t) X2(t) X3(t) X4(t) ee(t)

3.6478 – – – – – – – – 0.63266
3.7500 – 0.06561 – – – 0.00547 – – 0.50622
4.0000 – 0.12521 – – – 0.03174 – – 0.35917
4.8000 – 0.18700 20.06290 – – 0.16455 1.98723 – 0.46619
5.8000 0.01909 0.19784 20.11721 – 0.00237 0.36172 1.88970 – 0.35467
6.2000 0.04079 0.16552 20.12673 – 0.01511 0.43320 1.84047 – 0.03608
7.0000 0.07949 0.13962 20.13906 – 0.06408 0.55208 1.72258 – 0.02130
7.8000 0.12249 0.13891 20.15095 – 0.14554 0.66231 1.61747 – 0.02265
8.9000 0.19330 0.16640 20.17143 20.01460 0.31958 0.82761 1.43879 1.99576 0.05510
9.1000 0.20784 0.17572 20.17204 20.01821 0.36005 0.86203 1.40443 1.99238 0.03307
9.3000 0.22294 0.18646 20.17303 20.02146 0.40350 0.89850 1.36992 1.98832 0.02507
9.5000 0.23860 0.19811 20.17456 20.02450 0.45003 0.93723 1.33512 1.98365 0.02731
9.8000 0.26321 0.21460 20.17562 20.02884 0.52588 0.99964 1.28248 1.97553 0.01560

10.100 0.28919 0.22469 20.16982 20.03303 0.60936 1.06599 1.23059 1.96614 0.01427
10.300 0.30724 0.22933 20.16285 20.03577 0.66944 1.11148 1.19749 1.95919 0.01387
10.400 0.31648 0.23241 20.15949 20.03713 0.70086 1.13464 1.18146 1.95552 0.01358
10.519 0.33054 0.23806 20.15507 20.03915 0.73959 1.16275 1.16275 1.95095 0.01247
10.700 0.34533 – – 20.04085 0.80047 – – 1.94394 0.01356
10.900 0.37116 – – 20.04381 0.87270 – – 1.93539 0.01176
11.100 0.39971 – – 20.04687 0.95046 – – 1.92626 0.00965
11.300 0.42990 – – 20.05035 1.03415 – – 1.91645 0.00945
11.450 0.45375 – – 20.05328 1.10102 – – 1.90861 0.00850

Note. «e(t) 5 u100 3 (E5(t) 2 o4
i51 Ei(t))/E5(t)u, similar to Eq. (34), where Ei(t) is the energy calculated using (29) to (33) with Vi the

domain of region i at the time t 2 Dt, and V9i the domain at time t. E5(t) 5 et
t2Dt hF1(t) 1 F2(t)j dt.

Table I shows the positions and velocities of the different moving boundaries at
certain times, with Dt 5 1/20 s, g2 5 g3 5 0.45, g1 5 g4 5 1.0, b 5 h30, 5, 0, 10j,
c 5 h15, 20, 15, 0j, and « 5 0.05 percent. In order to validate the numerical results,
the energy balance (34) is checked at each time step, by evaluating the relative
error ee , between the energy provided and consumed. For that end, the temperature
at several internal points is computed to calculate the integrals in Eqs. (29) and
(30); however, these calculations are a post-processing task and are not involved
in the solution of the problem (i.e., positions of and heat fluxes at the moving
boundaries). It can be seen, from Table I, that the numerical results agree with the
energy balance where ee is relatively small. Furthermore, ee contains another error
due to evaluations of integrals (29) and (30), which can be reduced by increasing
the number of internal points. This integration error is higher when the temperature
gradient is sharp, but decreases when the gradient is diminished; this is clearly
illustrated in Table I where ee decreases with time.

Figures 3 and 4 show the velocity history of the melting and vaporisation fronts
for problem 1 when the boundaries are subjected to different heat fluxes. The
corresponding moving boundary positions are shown in Fig. 5. Figure 3 shows that
when the two heat flux inputs are of similar order, the two melting interfaces behave
in a similar manner. There is only a time delay and a difference in the direction of
propagation between the two. This is also valid for the two vaporisation fronts. In
general, the Liquid/Solid (L/S) interface accelerates sharply just after its appear-
ance, then its velocity starts to decrease due to the increase of thermal-resistance
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FIG. 3. Velocities uXju versus time for problem 1 when b 5 h200, 10, 0, 10j and c 5 h180, 10, 0, 9j.

of the liquid as the thickness of the melting region increases. It reaches a maximum
speed just before the appearance of the vaporisation front. When the Vapour/
Liquid (V/L) interface appears, the melting boundary slows sharply because of the
loss of heat due to vaporisation. The V/L accelerates in the initial instance, and
then continues to accelerate at rates proportional to the heat flux input throughout
the process. The L/S velocity reaches a minimum after the appearance of the
V/L, then it starts to increase again. This is due to the fact that the heat flux entering
the solid region decreases as the melting fronts approach each other (i.e., there is
less energy absorbed as the whole solid region approaches the melting point). The
heat flux at the L/S decreases with a smaller gradient than the heat entering the
solid, resulting in greater proportion of energy being available to melt the solid
material. Just before the total melting, the L/S velocity starts to decrease again due
to the decreasing heat flux throughout the liquid region and the almost negligible
heat flux exiting the region.

Figure 4 shows the histories of the velocities when the two extremities are sub-
jected to heat fluxes of different orders. The melting front which starts from the
extremity where a quadratic heat flux is prescribed behaves more or less in a manner
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FIG. 4. Velocities uXju versus time for problem 1 when b 5 h30, 5, 0, 10j and c 5 h15, 20, 15, 0j.

similar to that shown in Fig. 3. Although the second melting interface shows a
similar pattern, the larger delay prevented the second boundary to have a similar
curve. For instance, the concavity between the two maxima is almost flat.

Table II shows that the order of convergence in time of the method is one. This
is not established mathematically but verified numerically. Furthermore, it must be
emphasised that this analysis only concerns time since there is no space discretiza-
tion. The numerical procedure used for determining the order of convergence is
similar to that described in [4].

Let z 5 z(u) be a certain functional of the solution u. For example, u in Table
II is taken as T(a, tc), X2(tc), and X3(tc), respectively; tc being an arbitrary given
time (tc 5 5.0 in Table II). Let z̃i be the approximate value of z for a given Dti .
We want to determine a positive number p such that

z̃i 2 z Q c (Dti)p, (35)

where c is a constant. Let Dti22 , Dti21 , and Dti be three successive values of Dt with
Dti22 , Dti21 , Dti . If (35) holds, then
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FIG. 5. Positions of the moving boundaries (Xj) versus time for problem 1. Solid lines are for b 5

h30, 5, 0, 10j, c 5 h15, 20, 15, 0j and dashed lines are for b 5 h200, 10, 0, 10j and c 5 h180, 10, 0, 9j.

f(z̃i) 5
z̃i 2 z̃i22

z̃i21 2 z̃i22

Q
(Dti)p 2 (Dti22)p

(Dti21)p 2 (Dti22)p 5
r p

2 2 1
r p

1 2 1
5 f (p), (36)

where r2 5 Dti/Dti22 and r1 5 Dti21/Dti22 . Since f (p) increases monotonically and
f (p) . f (0) 5 (log r2/log r1), one can determine a unique p 5 p(Dti , Dti21 , Dti22)

TABLE II
Convergence of z̃ for Different Time Steps Dt

Dt z̃ 5 T(a, tc) p z̃ 5 X2(tc) p z̃ 5 X3(tc) p

1/6 651.1960 – 0.2169592 – 1.967344 –
1/18 644.2786 – 0.2033089 – 1.972097 –
1/30 642.9516 1.05 0.2005078 0.97 1.973044 1.00
1/64 641.8986 1.01 0.1981973 0.95 1.973827 0.94
1/100 641.5837 1.09 0.1974600 0.99 1.974077 0.99
1/200 641.3195 1.11 0.1968036 1.00 1.974304 0.97
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TABLE III
Comparison of tm , tv , te , and V(te) for Different Time Steps Dt

Dt [s] tm [s] tv [s] te [s] V(te) [m]

FD method [2]

1/4 0.32740 1.58887 9.15907 0.26318
1/8 0.32660 1.58783 9.15828 0.26319
1/16 0.32580 1.58705 9.15745 0.26318
1/32 0.32494 1.58620 9.15670 0.26319

FE method [3]

1/4 0.36150 1.63034 9.75464 0.28351
1/8 0.32897 1.63611 9.40210 0.26703
1/16 0.32767 1.63446 9.38719 0.26633
1/32 0.32768 1.63439 9.38708 0.26632

BE method

1/4 0.32767 1.61768 9.35607 0.26676
1/8 0.32767 1.62573 9.36930 0.26641
1/16 0.32767 1.62997 9.37778 0.26635
1/32 0.32767 1.63225 9.38214 0.26630

such that f (p) 5 f(z̃i) (see reference [4] for details). Table II clearly shows a
consistent order of convergence of one. The same average p was obtained by
considering other functionals and different sequences of time steps. This result is
consistent with the constant discretization used in time. Table II also shows that,
unlike FDM and FEM, the method is not very sensitive to Dt (this is more clearly
shown in Table III); i.e., the results are as good with larger time steps as they are
with smaller ones.

To further validate the numerical scheme, the problem of the collapse of a solid
wall, treated in references [2, 3], is also considered for the purpose of comparison
with FD and FE solutions (this will be referred to as problem 2). It consists of a
solid wall of thickness a subjected to a constant heat flux F at x 5 0 and thermally
insulated at the extremity x 5 a (i.e., F1(t) 5 F and F2(t) 5 0). The thermo-physical
properties were taken from [3] and have the following values:

a 5 1 m, T(x, 0) 5 27 8C, F 5 2500 W/m2,

Cl 5 Cs 5 4.944 W/m3 8C, Kl 5 Ks 5 0.259 W/m 8C,

lm 5 2160 J/m3, lv 5 37200 J/m3,

Tm 5 1454 8C, Tv 5 3000 8C.

A comparison of the time at which melting starts (tm), the time at which vaporisa-
tion starts (tv), the time for the collapse of the wall (te), and the quantity of material
evaporated V(te), respectively, for problem 2 is shown in Table III. Table III also
shows that the BEM is less sensitive to the time step size compared to FDM or
FEM. However, the results shown in Table III for FDM are for variable time step,
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FIG. 6. Velocities versus time for problem 2.

but the latter remark remains valid if a constant time step is used in the FDM.
Furthermore, it can be seen that the convergence of the BEM solution is much
faster. For instance, there is only a difference of 4.4 3 1024 between the computed
V(te) using the FEM with Dt 5 1/32 and that of BEM with a time step 8 times
larger (Dt 5 1/4).

Figure 6 compares the history of the velocities of the moving boundaries, for
problem 2. It shows that there is a good agreement between the computed velocities
using the three methods. Figure 6 shows that the velocity histories of the melting
and vaporisation fronts have similar behaviours as that depicted in Fig. 3. Unlike that
of Fig. 3, the melting interface reaches a maximum speed just after its appearance and
then starts to decrease, even before the appearance of the vapour front. This is
due to a loss of temperature gradients at the interface as the melting front moves
forward; however, this loss is much greater, due to the constant heat input, than
that of problem 1. This causes the velocity of the melting front in downward trend
in problem 2, compared to a slight decrease in the case of problem 1. The vaporisation
front accelerates in the initial instance and then converges towards a constant
velocity due to the constant heat flux input. Just before the total melting or the
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FIG. 7. Positions of the moving boundaries versus time for problem 2.

collapse of the wall, the melting velocity starts to decrease again due to the decreas-
ing heat flux throughout the liquid region and the adiabatic extremity.

As with the velocities, Figs. 7 and 8 show a good agreement between the computed
positions of the moving boundaries and the temperature at different positions,
respectively, using the three methods. However, it must be noted that when using
the FDM or FEM, the temperature inside the domain is computed at all time steps,
whereas for BEM, the temperature at any position within the domain at any time
can be calculated directly from the computed values and their time-history at the
boundaries and the initial condition (i.e., Eq. (14) with c(j) 5 1) without the need
to compute its value at previous steps. In order to further validate the results, the
energy balance check (i.e., Eq. (34)) is performed from the initial to the final time
of the process, where the relative error between the energy provided and consumed
is found to be similar to the prescribed error allowed to stop the iteration process,
e in Eq. (24). For example when e 5 5 3 1022%, 100 3 (E5 2 o4

i51 Ei)/E5 5

25.2 3 1022%, for a Dt 5 1/16.
Table IV compares the solution of the system (20) with that of (25) in terms of

the relative error between the two solutions (REV for velocity and REP for moving
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FIG. 8. Temperature at different positions versus time for problem 2.

boundary position), the improvement in CPU-time (CPUI), and the average number
of iterations per step (AIS) for different time steps. It can be seen that the two
solutions converge to each other as the time step Dt becomes smaller. However,
the improvement in cpu-time decreases with Dt. This is due to the fact that the
CPU-time for both solutions becomes relatively similar as the average number of
iterations per step converges to one iteration.

TABLE IV
Variation of CPUI, AIS, REV, and REP with Dt

Dt 1/4 1/8 1/10 1/20 1/50

CPUI [%] 77.709 70.050 65.200 47.068 12.483
AIS 11.80 4.80 3.84 2.69 1.78
REV [%] 0.4435 0.0699 0.0364 0.0199 0.0013
REP [%] 0.1368 0.271 0.0205 0.0034 0.0021
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5. CONCLUSIONS

From the numerical results shown in the previous section, it can be seen that the
boundary element method is very suitable for problems with multiple moving
boundaries. It can handle these problems with great ease, especially when several
boundaries are simultaneously in motion. In general, refinement of the space-time
mesh can be used to increase the accuracy of numerical techniques; however, this
is always at the expense of greater CPU-time and memory requirements. When
computations are to be performed for extended time, the use of large time steps
is very desirable to reduce the computational cost. However, this results in loss of
accuracy usually attendant with large meshes. Finding an optimum mesh to satisfy
these paradoxes is a major problem in computational mechanics. The results show
that, although the solution due to FEM and BEM are very close when the time
step is small, BEM certainly outperforms its competitors when large time steps are
used. This makes the BEM a more suitable choice for such problems, since it
compromises between these two antagonistic concerns. Extension of the present
scheme to multi-dimensional problems is straightforward from the theoretical point
of view. However, evaluation of the convolution integral describing the time history
of the boundary variables becomes a major task. Recent research suggests a fast
algorithm capable of performing this integral in a very efficient manner, using
Fourier series expansions of the Green’s function [15].

APPENDIX

The integrals of the Green’s function and its derivative with respect to space
when the field point x is stationary are given by

Et2

t1
G(j, x, tn, t) dt 5

2r

2aÏf
HF1

a
exp(2a2) 1 Ïf erf(a)Ga2

a1

J , (37)

where

ai 5
r

Ï4a(tn 2 ti)
, i 5 1, 2 (38)

Et2

t1

G(j, x, tn, t)
x

dt 5
sign(j 2 x)

2a
(erf(a2) 2 erf(a1)), (39)

where sign(x) 5 uxu/x and erf(x) is the error function.
When the field point is moving with time, i.e., x 5 X(t), instead of (37) and (39),

the following are used:

Et2

t1
G(j, X(t), tn, t) dt 5 2

1
2v Hexp S2

bv
a DFerf S2

v(tn 2 t) 2 b

Ï4a(tn 2 t)
DGt2

t1

1 Ferf S2
v(tn 2 t) 1 b

Ï4a(tn 2 t)
DGt2

t1
J (40)
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for any X(t) 5 x 1 v(t 2 t9) and b 5 j 2 x 2 v(t 2 t9);

Et2

t1

G(j, X(t), tn, t)
x

dt 5 2
1

2a
exp S2

bv
a DFerf S2

v(tn 2 t) 2 b

Ï4a(tn 2 t)
DGt2

t1

. (41)

The coefficient of matrices Gn
j and Hn

j and vector Mn
j in Eq. (19) can be deduced

from Eqs. (16) and (17) as

Mn
j 5 F aj C

n
j (Xj) 1 cj (Xj , tn)

aj C
n
j (Xj11) 1 cj (Xj11 , tn)

G , (42)

where

C n
j ( f ) 5 On21

i5ij11

Hg( f, Xj11, tn, ti) Sqi2
j11 1

1
aj

X i
j11 ui

j11D2 ui
j11 h( f, Xj11, tn, ti)J

2 On21

i5ij11

Hg( f, Xj , tn, ti) Sqi1
j 1

1
aj

X i
j ui

jD2 ui
j11 h( f, Xj, tn, ti)J (43)

Gn
j 5 3 S

As 2 aj h(Xj , Xj , tn, tn)

1 X n
j g(Xj , Xj , tn, tn)

D S aj h(Xj , Xj11 , tn, tn)

2 X n
j g(Xj , Xj11 , tn, tn)

D
S 2aj h(Xj11 , Xj , tn, tn)

1 X n
j g(Xj11 , Xj , tn, tn)

D SAs 1 aj h(Xj11 , Xj11 , tn, tn)

2 X n
j g(Xj11 , Xj11 , tn, tn)

D4 (44)

and

Hn
j 5 aj F g(Xj , Xj , tn , tn) 2g(Xj , Xj11 , tn , tn)

g(Xj11 , Xj , tn , tn) 2g(Xj11 , Xj11 , tn , tn)
G . (45)

For Eq. (20), omitting the superscripts k and n, we have:

G 53
G1

??? 0

Gj

0 ???

GJ

4 , H 53
H1

??? 0

Hj

0 ???

HJ

4 ,

M 53
M1

.

..

Mj

.

..

MJ

4 . (46)
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